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Abstract — An efficient computer-aided solution procedure based on the
finite-element method is developed for solving general waveguiding struc-
tures composed of lossy materials. In this procedure, a formulation in
terms of transverse magnetic-field component is adopted and the eigen-
value of the final matrix equation corresponds to the propagation constant
itself. Thus, one can avoid the unmecessary iteration using complex fre-
quencies. To demonstrate the strength of the present method, numerical
results for a rectangular waveguide filled with lossy dielectric are presented
and compared with exact solutions. As more advanced applications of the
present method, a shielded image line composed of a lossy anisotropic
material and a lossy dielectric-loaded waveguide with impedance walls are
analyzed and evaluated.

1. INTRODUCTION

OMPUTER-AIDED numerical analysis has become
C a necessary tool for designing microwave and optical
waveguiding structures such as image line, microstrip line,
optical channel guide, and optical fiber [1]. Increasing
complexities of modern wave functional devices, particu-
larly in monolithic integrated circuit form, have created a
critical need for more accurate and efficient computer-
aided analysis techniques.

Among several methods, the finite-element method
(FEM) enables one to predict accurately the modal char-
acteristics of a waveguide system with an arbitrary cross
section. To date almost all of the applications of the FEM
have been focused on a loss-free system. On the other
hand, attempts have been made for a lossy system, using
the axial electromagnetic-field ( E,— H,) formulation [2]-[5]
and the scalar approximation [6], [7].' However, they have
some crucial drawbacks. In the F,~ H, formulation, spuri-
ous solutions appear because of singularity of the operator
and they are coupled with physical solutions. Furthermore,
unnecessary iterations are involved until the imaginary
part of complex frequency is negligible because the eigen-
value of the final matrix equation corresponds to the
frequency. On the other hand, in the scalar approximation,
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! Recently, Matsuhara et al. [8] have extended the fimte-element tormu-
lation in terms of the transverse electric and magnetic field components
[9] to the waveguide with loss or gain.

spurious solutions do not appear and iterations are not
involved. However, this approximation is applicable only
to weakly guiding structures such as optical waveguides.

In this paper, an efficient computer-aided solution pro-
cedure based on the vectorial finite-element method is
developed for solving general waveguiding structures com-
posed of lossy materials. In this procedure, a formalism in
terms of transverse magnetic-field component established
for a loss-free system [10] is extended to a lossy system.
The main advantage of this approach is that one can avoid
the unnecessary iteration using complex frequencies be-
cause the eigenvalue of the final matrix equation to be
solved corresponds to the propagation constant itself. To
demonstrate the strength of the present method, numerical
results for a rectangular waveguide filled with lossy dielec-
tric are presented and compared with exact solutions. As
more advanced applications of the present method, a
shielded image line composed of a lossy anisotropic
material and a lossy dielectric-loaded waveguide with im-
pedance walls are analyzed and evaluated.

II. Basic EQUATIONS

We consider a three-dimensional dielectric waveguide
with an arbitrary cross section  in the xp plane (Fig. 1),
whose relative permittivity tensor [€] is

e, 0 0
[e]=]0 ¢ O (1)
0 0
€, =€ — je, i=x,y,z (2)

where €; and €/’ are the real and the imaginary part of the
complex relative permittivity e,, respectively.

With a time dependence of the form exp(jwt) being
implied, from Maxwell’s equations the following vectorial
wave equation is obtainable:

v X([e] 'V xXH)-kZH=0

where k, is the free-space wavenumber.
The divergence-free constraint v - H = 0 can be written

H,=y Y(9H,/dx+ 8H,/3y) (4)

©)

where

(5)

y=at jB.
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Here, a, 8, and y are the attenuation, phase, and propa-
gation constants, respectively.

III.

Dividing the cross section £ of the guide into a number
of second-order triangular finite elements as shown in Fig.
1, the magnetic fields within each element are defined in
t>rms of those at the corner and midside nodal points:

H=[N]"(H}, exp(-vz)

FINITE-ELEMENT FORMULATION

(6)

where
{nv} {0} {0}
[N]=] {0} {~} {0} (7
{0y {0} J{N}
and
{H,},
(g}, =|{H#}.| (8)
{H.}.

Here, {N} is the shape function vector; {0} is a null
vector; T, {-}, and {-}7 denote a transposition, a column
vector, and a row vector, respectively; and { H, },, { H, }.,
and { H,}, are complex magnetic-field vectors correspond-
ing to the nodal points within each element e.

Application of the standard finite-element technique via
a Galerkin procedure to (3) gives the following global
matrix equation:

[SH{H} +ko[T'I{H}-K5[T]{H} = {0}
where

[s1=X [ [1B Ul B dxdy

9)
(10)
[T = #(Z,/20) L [ [NIN(§)]7 4T (1)

[T]= Zf/e[N]*[N]dedy (*: complex conjugate)
(12)

{0} —v{N}  —d{N}/ 0y
[B()]=| {N} {0} I{N}/dx
Ja{N}/dy —jd{N}/3x {0}
(13a)
[B'(v)]
{0} (N}  —3{N}/dy
=| -v{N} {0} d{N}/9x
N}y B(NY/ex {0}
(13b)
[N(8)]
sin?6 { N } —sinfcos§{N} {0}
=| —sinfcosf{N} cos?8{ N} {0}
{0} {0} J{N}

(14)
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Fig. 1. Geometry of problem. n: unit normal vector; s: unit tangential
vector; 0: angle between n and x axis; Q: waveguide cross section; T:
impedance wall.

Here, ©, and X, stand for summation over all elements
related to the domain @ and the boundary T, respectively,
and Z, and Z, are the surface impedance [11] of T and
the intrinsic impedance of vacuum, respectively. (The de-
rivation of (9) is given in Appendix 1) Provided that T"is a
perfect electric or magnetic wall, the second term of the
left-hand side of (9) is dropped [12].

The solutions of (9) are known to involve many spurious
solutions which do not satisfy the divergence relation (4)
[12]. In what follows, we adopt the same procedure devel-
oped for the loss-free system in [10] to avoid such unneces-
sary solutions.

Using the finite-element method based on a Galerkin
procedure on (4), the following matrix relation is obtained
[10}:

{H}=[D|{H,)} (15)

where

(U]

[P1=11p171p,

(16)

(D=1 [ [(NHN)} dxy (7)

[D)=-iy " E [ [[(n)a (N} 0x
(N}a{N)YT/3y] dxdy (18)
{H,}=[§§j]. (19

Here, the components of vectors { H, } and { H,} are the
values of H, and H, at nodal points in @, respectively,
and [U]is a unit matrix.

Substituting (15) into (9) and operating [ D]” on the left
[10], the following matrix equation with the complex trans-
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verse magnetic-field component { H,} is derived:

(Sl + ko[ T {H Y = k[T, ] (H,) = {0} (20)

where

[S.] =[D]"[S][D] (21)
[7;] =[D]"[T][ D] (22)
[7.] = [p]"[T][D]. (23)

Note that in (20) the divergence relation (4) is considered
[10]. However, (20) is a matrix eigenvalue problem whose
eigenvalue corresponds to k,; it is therefore necessary to
iterate on o« or B until the imaginary part of k, becomes
negligible. Similarly, the imaginary part of the dielectric,
which depends on w, will need to be iterated until €’ = 0/w
for a medium of relative conductivity 6. To avoid such
inefficiency, in what follows we modify (20) into a con-
venient form to be y? as an eigenvalue.

Substituting (10)—-(12) and (16)—(18) into (20)—(23) and
rearranging (20) into a desirable form, the following final
matrix equation is derived:

Here, [G,]-[Gy), [G¢], and [G{]-[G¢] (i=x, y, z) are de-
fined by

[Gl]=%:ffe(a{N}/ax)(a{N}T/ax)dxdy (35)

=X [ [(o{n) /8y (o (N) /3y) dxdy  (36)
[Gg]=:‘:ffe(a{N}/ax)(a{N}T/ay)dxdy (37)
[G.] =Z:ffe(a{N}/ax){N}dedy (38)
[G51= X [ [(2{N}/25)(N) T dsdy (39)
(Gl =X [ [{N} (N} axay (40)
[Gg]=§:/,{zv}{N}Tdr (41)

J—fo Ha(N)/ox)(3{N}"/3x) dxdy (42)
[=X [ [a(a(n)/ay) (0N} /oy) axdy ()

N[Al{H,}+A[B]{H}+[C]{H}=(0} (24) G3]~fo (8{N}/8x) d{N) /8y)dxdy (44)
where
A=y @s) [G]=X[[eia(N)/ax)(N}  axdy (45)
[A]=H[§;yT] [Ej]} ([0]: null matrix) (26) [Gé]=Z/L€Z§(3{N}/3y){N}dedy (46)
[ [B,,] Gl = < YNY(N) dxdy. 47
[B]=BT[]} oy GI=E [y 6y as (47)
-[ *y ] [ yy] The derivation of (24) is given in Appendix IIL
[B..]1=[G5]-[G2]7[Ge) (G, 1" - [GI[Gs] [GY] — k[ Gel + ko(jZ,/Z,)sin*6[ G ] (28)
[B.,] =—165]" = [6]"[Gs) 1651~ [Gull G, 7' [G5] = ko(4Z,/Z,)sinbcos 8 G (29)
[B,,] = [G5]=[62]7[G]1 (G517 ~[Gs)G 1 ' [G2] - k3[Gy] + ko(jZ,/Z,) cos?8[G{] (30)
el (6]
e 6] (31)
[C..] =[G 1G] ([61] +[G5DIGs] '[G.]"
~ kGG ] G ]T +ko(4Z,/Z0)[GallGs] ' [G411G] ' Gal” (32)
(€] = [GIG 17N (6] + [5Gl 61"
— kGG [Gs]" + kol /2, /Z)[G1[Gs] TGN G6] 71 Gs]™ (33)

[C,,] = 6511661 ([62] +[G3 D) Gs] [Gs]T — k2165 11Ge] T [Gs]™

+ko(JZ,/Z,)[Gs]1Gs] ' [6L1[G1 7 [Gs].

(34)
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Since (24) is a complex quadratic eigenvalue problem, it
can be reduced to the following standard form [13]‘

[0] (U] {Ht}} [{ ,}}
~14]17c] —[A]*[B]][{E} {H} “8)
{H)

where

Although (48) shows a little complexity in comparison
with previous formulations [2]-[5], it is a standard eigen-
value problem whose eigenvalue directly corresponds to
the propagation constant y. Thus, one can avoid unneces-
sary iterations using complex frequencies. The only disad-
vantage of this form is that it involves 4N, unknown
components in each eigenvector compared with 2N, com-
ponents in the original system, where N, is the number of
nodal points.

=>\{Ht}' (49)

IV. NUMERICAL EXAMPLES

In this section, we present computed results obtained by
(48). In numerical computations, the HITAC S-810/10
supercomputer is used and double precision is adopted to
avoid roundoff errors. The inverse matrices, [G,]™' and
[A4]17Y, are computed via the Gauss—Jordan method. As an
eigenvalue solution method, the LR algorithm is applied;
eigenvectors are computed via the inverse iteration.

A. Dielectric-Filled Rectangular Waveguide

Fig. 2(a) shows the relative error of the computed propa-
gation constant for the fundamental (TE,;) and first higher
order (TE,;) modes in a rectangular metallic waveguide
filled with lossy isotropic dielectric of relative permittivity
¢=1.5—j1.5. Four divisions, (Ng, Np)=(4,15), (16,45),
(36,91), and (64,153), are chosen in the numerical compu-
tations, and storage requirements are 0.3, 2.4, 9.6, and 27.0
MB, respectively.

The relative error e is defined by

{ (e—a)/a
e = —_. -
(B-B)/B
where (a, B) and (&, B) are the computed and exact solu-
tions, respectively. The exact solutions are

B/ko= [{p+(p2 + 42)1/2}/2]1/2

(a/2)(B/ko) "

for attenuation constant

(50)

for phase constant

(51)

a/ky= (52)

where

p=¢—{mn/(koga)}’—{nn/(kob)}’, q=¢". (53)

Here, m and n stand for the mode indices for the x and y
directions, respectively.

It is readily seen from Fig. 2(a) that the relative error
decreases as the number of elements N, increases. Also, it
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Fig. 2. Convergence of solutions (kqb = 3.0). (a) Eigenvalues. (b) Eigen-
vectors. '

is interesting to note that the directions of convergence are
opposite between the real and imaginary parts of the
propagation constant; i.e., e > 0 for a whereas e <0 for 8.
Investigation of the near-cutoff frequency for the TEm
mode (kob = 0.01) has been carried out as well. Also in
this case, the relative error decreases as N, increases.
However, the same direction of convergence, e <0, is
observed for both « and B.

Fig. 2(b) shows the relative error of the computed eigen-
vectors for Fig. 2(a). Since exact analytical solutions give

=0 and H, =0 for the TE,, and TE,; modes, respec-
tlvely, the followmg definitions are adopted as a measure
of error mvolved in eigenvectors:

r_ ”Hy”/”Hx“ forTElo mode (54)
" Hx”/" Hy Il for TE01 mOde
7N =V{H} (K} (i==x y) (55)
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Fig. 3. Computing time necessary to obtain one point in propagation
diagram. The solid line shows total CPU time, whereas the broken line
shows CPU time necessary to solve the eigenvalue problem (48).

where 1 denotes complex conjugate and transpose. It is
found from Fig. 2(b) that the relative error decreases as N,
increases. ,

Fig. 3 displays the computing time necessary to obtain
one point in a propagation diagram, where the abscissa
means the dimension of the final matrix equation (48).
Comparison between the solid and broken lines indicates
that in the present program the greater part of the comput-
ing time is spent on solving (48).

B. Shielded Image Guide

As an advanced application of the present program, we
next consider a lossy image guide shielded with a perfectly
conducting box (Z,=0). We subdivide only half of the
cross section of a guide into second-order triangular ele-
ments; the plane of symmetry is assumed to be a magnetic
wall. The storage requirement is 7.6 MB in this division.

Fig. 4 shows the dispersion characteristics in the slow-
wave region for the Ef; mode of a lossy isotropic irhage
guide, taking the imaginary part of relative permittivity,
€”, as a parameter. As is seen from Fig. 4(a), the phase
constant B for €”=0.15 (loss tangent: tand =0.1) is al-
most the same as that for €” = 0, i.¢., the loss-free case.

Since the relative permittivity terisor assumed in this
paper is arbitrarily diagonal as shown in (1), we can
consider a lossy anisotropic waveguide whose principal
axis coincides with one of the coordinate axes.
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Fig. 4. Dispersion characteristics for shielded image guide composed of
lossy isotropic dielectric (£} mode). (a) Normalized phase constant.
(b) Normalized attenuation constant.

Figs. 5 and 6 show the dispersion characteristics in the
slow-wave region for the Ef, mode of a lossy anisotropic
image guide whose cross-sectional shape is the same as
that in Fig. 4. The real part of €,,€,, is chosen as a
parameter in Fig. 5 (“dielectric anisotropy™), whereas the
imaginary part of € , ¢ ;s 18 chosen in Fig. 6 (“conductivity
anisotropy”). Comparison between Fig. 5(a) and Fig. 6(a)
clearly shows that a similar effect is seen in the phase
behavior from the two types of anisotropy. On the con-
trary, as is found from the comparison between Fig. 5(b)
and Fig. 6(b), the opposite effect is seen in the attenuation
behavior from the above two types of anisotropy. That is,
the attenuation becomes smaller as €, Increases while it
becomes larger as €]’ increases.
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Fig. 5. Dispersion characteristics for shielded image guide composed of
lossy anisotropic dielectric (E{; mode). The real part of dielectric is

assumed to be anisotropic. (a) Normalized phase constant. (b) Normal-
ized attenuation constant.

C. Dielectric-Loaded Waveguide with Impedance Walls

As an example of the guide with the impedance walls
characterized by the surface impedance, we consider a
dielectric-loaded waveguide surrounded by a medium with
the surface impedance Z,. We subdivide the entire cross
section of the guide into second-order triangular elements
(Ng =16, N, = 45); the storage requirement is 2.5 MB.

Fig. 7 shows the dispersion characteristics for the first
five modes of a lossy dielectric-loaded rectangular wave-
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Fig. 6. Dispersion characteristics for shielded image guide composed of
lossy anisotropic dielectric (E{; mode). The imaginary part of dielec-
tric is assumed to be anisotropic. (a) Normalized phase constant.
(b) Normalized attenuation constant. ‘

guide with impedance walls (Z,/Z,=10"3(1+ j)). Our
results agree well with those computed by Matsuhara ez al.
[8] for both attenuation and phase.

V. CONCLUSIONS

A powerful computer-aided solution procedure based on
the finite-element method has been developed for solving
general waveguiding structures composed of arbitrarily
lossy media. In this procedure, a formulation in terms of
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Fig. 7. Dispersion characteristics for lossy dielectric-loaded waveguide

with impedance walls. ¢ = 2251 - j0.01), ¢, =10, Z,/Z, =
10731 + j). —present method; ° Matsuhara ef al. (2) Normalized
phase constant. (b) Normalized attenuation constant.

transverse magnetic-field component established for a gen-
eral loss-free system has been extended to a lossy system.
The main advantage of the present scheme is that one can
avoid the unnecessary iteration by means of complex fre-
quencies because the eigenvalue of the final matrix equa-
tion to be solved corresponds to the propagation constant
itself.

Although we have considered dielectric waveguides
within a conducting box, one can straightforwardly apply
the present approach to open, unbounded dielectric wave-
guides with the help of the virtual boundary walls [6], [7],
[10], [12] or the infinite elements [14]. Application to the
case of curved metallic boundaries is also straightforward
provided that they are replaced by a number of straight
lines and appropriate boundary conditions [15] are im-
posed on each line. Furthermore, the present method can
be extended to the case of arbitrary permittivity tensor
with off-diagonal elements.
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APPENDIX |
DERIVATION OF (9)

Application of the standard finite-element method [12]
based on a Galerkin procedure to (3) yields the following
matrix equation including boundary integral term along I':

[SHH}-KITI{H}+ j(ko/Zy)
J (e [NI)(nx E)dT = (0} (A1)
where the Maxwell’s curl equation
V X H = joeg[e]E (€, vacuum permittivity) (A2)

has been utilized.

If a highly conductive material is assumed outside T', the
following boundary conditions derived from the plane-wave
approximation [11} hold:

E=ZH, E=-ZH onl. (A3
Using (A3), n X E in (A1) is evaluated as
nXE=2Z (sH,+zH,)
= Zn{x(Hxsin20 - Hysinﬂcosﬂ)
y(— H_sinfcosf
+ Hycoszﬂ) +sz} (A4)
where
s=—xsinf + ycosé (A5)
and
H =— H,sinf + H cosf (A6)

have been used. Here, x, y, and z are unit vectors for x,
¥, and z directions, respectively.
Substituting (6) into (A4) and (A1), (9) is derivable.

APPENDIX 11
DERIVATION OF (24)
Using the notations (35)-(47), [S], [T"], and [T] are
explicitly written as

[ s [s.]
=i 1] “
[ [5,.] [xy]} [[ ]
[Stt] = s [ t‘.] = (AS)
(8,17 [8,] [S,.]
[S,.]1=[65]-v*[G2] (A9)
[s,]=-lc:]" (A10)
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[s,,] = [6i] - v*[6¢] (A11)
[s..1=- v[Gi]” (A12)
[8,.] = - ivles]” (A13)
S..1=[61]+16G3] (A14)
Lm0
[T]—_IOIT (7] (A13)
(7] (7]
[1,]= Al6
(7] [7) (A16)
[T]=(Z,/Z,)sin* 0] G¢] (A17)
[ ) == i(Z,/Z,)sinbcos [ G¢] (A18)
[T)] = j(Z./Z,) cos? 81 G (A19)
[T.]=j(Z,/Z,)[G¢] (A20)
[[7,] [0]
1= 1z (a21)
[z o]
[T"]__[O]T 7,] (A22)
1=1[1,] =I7..1=[G,]. (A23)
Similarly, [D,] and [D,] in (16) are
[Dz]=_j'}’_1{[G4]T [GS]T] (A24)
[D,] =[Gl (A25)

Substituting (16), (A7), (A15), and (A21) into (21)-(23),
we can obtain

[$.] =[S, 1+ [s02] 121+ ([s.102.] ' [2])"
+[D]7[D,]7s.1[D.]7'[D] (A26)

[7:]= [+ (2[RI TR ' ID] (A27)

[7.] =T+ D) [T ') (A28)

Substituting (A8)—~(A14), (A16)—(A20), and (A22)—(A25)
into (A26)—(A28) and (20), and rearranging the left-hand
side of (20) as a polynomial of y?, we can derive (24).
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