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Finite-Element Formulation for
Lossy Waveguides

KAZUYA HAYATA, KAZUNORI MIURA, AND
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Ab.vfract —Arr efficient computer-aided solution procedure based on the

finite-element method is developed for solving general wavegrriding stric-

tures composed of Iossy materials. In this procedure, a formulation in

terms of transverse magnetic-field component is adopted and the eigen-

vahre of the final matrix equation corresponds to the propagation constant

itself. Thus, one can avoid the unnecessary iteration using complex fre-

quencies. To demonstrate the strength of the present method, numericaf

results for a rectangular wavegrride filled with Iossy dielectric are presented

and compared with exact solutions. As more advanced applications of the

present method, a shielded image fine composed of a lossy anisotropic

material and a Iossy dielectric-loaded waveguide with impedance walls are

analyzed and evaluated.

I. INTRODUCTION

c OMPUTER-AIDED numerical analysis has become

a necessary tool for designing microwave and optical

waveguiding structures such as image line, microstrip line,

optical channel guide, and optical fiber [1]. Increasing

complexities of modern wave functional devices, particu-

larly in monolithic integrated circuit form, have created a

critical need for more accurate and efficient computer-

aided analysis techniques.
Among several methods, the finite-element method

(FEM) enables one to predict accurately the modal char-

acteristics of a waveguide system with an arbitrary cross

section. To date almost all of the applications of the FEM

have been focused on a loss-free system. On the other

hand, attempts have been made for a lossy system, using

the axial electromagnetic-field (E, - H=) formulation [2]-[5]

and the scalar approximation [6], [7].1 However, they have

some crucial drawbacks. In the E, – H, formulation, spuri-

ous solutions appear because of singularity of the operator

and they are coupled with physical solutions. Furthermore,

unnecessary iterations are involved until the imaginary

part of complex frequency is negligible because the eigen-

value of the final matrix equation corresponds to the

frequency. On the other hand, in the scalar approximation,
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1Recently, Matsuhara et al. [8] have extended the firute-element formu-
lation in terms of the transverse electric and magnetic field components

[9] to the waveguide with loss or gain.

spurious solutions do not appear and iterations are not

involved. However, this approximation is applicable only

to weakly guiding structures such as optical waveguides.

In this paper, an efficient computer-aided solution pro-

cedure based on the vectorial finite-element method is

developed for solving general waveguiding structures com-

posed of lossy materials. In this procedure, a formalism in

terms of transverse magnetic-field component established

for a loss-free system [10] is extended to a lossy system.

The main advantage of this approach is that one can avoid

the unnecessary iteration using complex frequencies be-

cause the eigenvalue of the final matrix equation to be

solved corresponds to the propagation constant itself. To

demonstrate the strength of the present method, numerical

results for a rectangular waveguide filled with lossy dielec-

tric are presented and compared with exact solutions. As

more advanced applications of the present method, a

shielded image line composed of a lossy anisotropic

material and a lossy dielectric-loaded waveguide with im-

pedance walls are analyzed and evaluated.

II. BASIC EQUATIONS

We consider a three-dimensional dielectric waveguide

with an arbitrary cross section Q in the xy plane (Fig. 1),

whose relative permittivity tensor [~] is

(1)

6,= e; – jc;, i=x, y,z (2)

where c; and c; are the real and the imaginary part of the

complex relative permittivity c,, respectively.

With a time dependence of the form exp (jot) being

implied, from Maxwell’s equations the following vectorial

wave equation is obtainable:

vx([6]-%x H)-k;H=o (3)

where k ~ is the free-space wavenumber.

The divergence-free constraint v. H = O can be written

Hz =y-’(dHX/8X + dHY/~y) (4)

where

y=a+j~. (5)
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Here, a, P, and y are the attenuation, phase, and propa-

gation constants, respectively.

III. FINITE-ELEMENT FORMULATION

Dividing the cross section Q of the guide into a number

of second-order triangular finite elements as shown in Fig.

1, the magnetic fields within each element are defined in

t xms of those at the comer and rnidside nodal points:

H=[N]T{H}= exp(–yz) (6)

where

[

{N} {0) {o}
[N]= {0} {~} {0}

1

(7)

{o} {o} j{N}

and

[]

{HX},

{H}, = {H,}e . (8)

{HZ},

Here, {N} is the’ shape function vector; {O} is a null

vector; T, {”}, and {. }~ denote a transposition, a column

vector, and a row vector, respectively; and { HX }., { HY },,

and {Hz }, are complex magnetic-field vectors correspond-

ing to the nodal points within each element e.

Application of the standard finite-element technique via

a Galerkin procedure to (3) gives the following global

matrix equation:

z

Fig. 1. Geometry of problem. n: unit normaf vectoq s: unit tangential

vector; 8: angle between n and x axis; Q: waveguide cross section; 11
impedance wall.

Here, Z. and X,, stand for summation over all elements

related to the domain !2 and the boundary r, respectively,

and Z. and ZO are the surface impedance [111of r and

the intrinsic impedance of vacuum, respectively. (The de-

rivation of (9) is given in Appendix I.) Provided that r is a

perfect electric or magnetic wall, the second term of the

left-hand side of (9) is dropped [12].

The solutions of (9) are known to involve many spurious

solutions which do not satisfy the divergence relation (4)

[12]. In what follows, we adopt the same procedure devel-

oped for the loss-free system in [10] to avoid such unneces-

[~l{H}+ ~o[T’l{H}–~;[T]{H} = {.} (9) Sary solutions.
Using the finite-element method ba&d on a Galerkin

where
procedure on (4), the following matrix relation is obtained

[S]= XJJIB’(Y)][MB(Y) ITWY (10) [w:
.e

[T’] = j(zn/zo)~~,[~]*[~(fl)]T~r
e’

(11)

where

{H}= [D]{ H,}

[T] = ~ ~~[N]*[N]’dxdy (*: complex conjugate)

[1[u]ee
(12) ‘D]= [DZ]-l[D,]

(15)

(16)

[

{o} –y{N} –6’{N}/dy

[MY)] = Y{N} {o} c2{N}/h

1

[Dz]=~/~{N}{N}TdxdY (17)
e e

jt?{N}/dy –jr?{N}/dx {o}

(13a) [D,] =-jy-l~/~[{N}d{ N}’/dX

[B’(y)]
ee

[

{o} Y{N} –d{N}/dy

1

{N}d{N}~/dy] dxdy (18)
. –Y{N} {o} d{ N}/i3x

–j8{N}/8y j~{N}/8x {o} [1{HX}

(13b) {~t}= {~y) . (19)

[N(e)]

[

sin2f?{N} –sin6cosf3{N} {o}

1

Here, the components of vectors { HX } and { HY} are the

. values of HX and HY at nodal points in Q respectively,
–sinOcos6{N} COS26{N} {o} . and [U] is a unit matrix.

{o} {o} j{N} Substituting (15) into (9) and operating [D]~ on the left

(14) [10], the following matrix equation with the complex trans-
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verse magnetic-field component {H, } is derived:

[sfl{~f}+~o[z/l{Ht}-~;[z,l{~,}={0} (20)
where

[S,] = [D] T[S][D] (21)

[~;] = [D] T[T’][D] (22)

[~t] = [D] T[T][D]. (23)

Note that in (20) the divergence relation (4) is considered

[10]. However, (20) is a matrix eigenvalue problem whose

eigenvalue corresponds to kO; it is therefore necessary to

iterate on a or ~ until the imaginary part of kO becomes

negligible. Similarly, the imaginary part of the dielectric,

which depends on u, will need to be iterated until 6“ = u/ti

for a medium of relative conductivity u. To avoid such

inefficiency, in what follows we modify (20) into a con-

venient form to be y 2 as an eigenvalue.

Substituting (10)-(12) and (16)-(18) into (20)-(23) and

rearranging (20) into a desirable form, the following final

matrix equation is derived:

A2[A]{H, }+ A[B]{H, }+[C]{~, } = {0} (24)

where

A=–y2 (25)

‘A]=[KYH]] ‘[O]:nullmat*x)’26)
(27)

Here, [GI]–[G6], [G(], and [G~]–[G~] (i= x, y, z) are de-

fined by

[Gl]=~~~(8{N}/dx) (d{ N} ’/dx)dxdy (35)
ee

[G51=z/J(~{~}/dY) {N} Tdxdy (39)
e

[G6]=; jj{N}{N}Tdxdy (40)

[f%’l=iy;N}{N}Tdr (41)

[G{] = ;i/~;:(~{~}/~x) (~{~}T/~x)~Xdy (42)
CC

[d= ‘xJJe{N}{N}Tdxdy. (47)
ee

The derivation of (24) is given in Appendix H.

[B..] = [G;] - [Gi]T[G,]-`[G,] T-[ G4][G6]-1[GJ] -ki[G,] +k,(jZn/zo)sin26[G(] (28)

[BXY] = - [G~l T-[ Gl]TIGGl-’IGSIT -[ G,l[G,l-l[Gj] ‘~,(~z./z.)sinecos@[G;] (29)

[By,] = [G;] -[ G:] TIG,I-’IG,IT-[G, ][G,]-l[G:] -k;[G,] +kO(jZn/ZO)COS2 tI[G;] (30)

‘C]=IE:I’TE!] (31)

[cxx]= [G4][G6]-l([G~] +[G;])[G6]-l[G.]T

–k~[G.][Gc]-l[G,]~ +kO(j-Q’ZO)[G,] [G,] -l[G:][G,]-l[G.]~ (32)

[cxy] = [G.][G6]-’([G/] +[G;])[G6]-1[G5]T

–i%:[G,J[G6]-1[ G5]T +ko(jZJZO)[G,][ G6]-l[G:][GJ1[GJ~ (33)

[Cyy] = [G][f%-’([q’] +[W])[G,]-l[G,]T -k:[G,][G,]-1[G5]~

+ko(&JZO)[G5][G6 ]-l[G:][GJ1[GJ~. (34)
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Since (24) is a complex quadratic eigenvalue problem, it

can be reduced to the following standard form [13]:

[

[0] [u]

1[

{H,}
-[ A]-’[c] -[ A]-’[B] {z}

where

[1

CA {:]

{H,} ’48)

(49)

Although (48) shows a little complexity in comparison

with previous formulations [2]–[5], it is a standard eigen-

value problem whose eigenvalue directly corresponds to

the propagation constant y. Thus, one can avoid unneces-

sary iterations using complex frequencies. The only disad-

vantage of this form is that it involves 4NP unknown

components in each eigenvector compared with 2 NP com-

ponents in the original system, where NP is the number of

nodal points.

IV. NUMERICAL EXM@LES

In this section, we present computed results obtained by

(48). In numerical computations, the HITAC S-810/10

supercomputer is used and double precision is adopted to

avoid roundoff errors. The inverse matrices, [G6] -1 and

[A] -1, are computed tia the Gauss-Jordan method. As an

eigenvalue solution method, the LR ‘hlgorithm is applied;

eigenvectors are computed via the inverse iteration.’

A. Dielectric-Filled Rectangular Waveguide

Fig. 2(a) shows the relative error of the computed propa-

gation constant for the fundamental (TEIO) and first higher

order (TEOI) modes in a rectangular metallic waveguide

filled with lossy isotropic dielectric of relative permittivity

c =1.5 – jl.5. Four divisions, (NE, NP) = (4, 15), (16,45),

(36, 91), and (64, 153), are chosen in the numeric? compu-

tations, and storage requirements are 0.3,2.4, 9.6, and 27.0

MB, respectively.

The relative error e is defined by

((a – ti)lii for attenuation constant
(50)

‘= \~fl-~~/~ forphaseconstant

where (a, ~) and (ii, ~) are the computed and

tions, respectively. The exact solutions are

B/kO= [{ P+(P2 + q2)’/2)/2]1’2

Z/k. = (q/2) (~/ko) ‘]

where

exact solu-

(51)

(52)

p=c’-{nz~/(koa) }2-{nw/(kob)}2, q=e”. (53)

Here, m and n stand for the mode indices for the x and y

directions, respectively.

It is readily seen from Fig. 2(a) that the relative error

decreases as the number of elements NE increases. Also, it
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Fig. 2. Convergence of solutions (/c. b = 3.0). (a) Eigenvalues. (b) Eigen-
veetors. ‘

is interesting to note that the directions of convergence are

opposite between the real and imaginary parts of the

propagation constant; i.e., e > O,for a whereas e <0 for /3.

Investigation of the near-cutoff frequency for the TEIO

mode (kob = 0.01) “has been carried out as well. Also in

this case, the relative error decreases as NE increases.

However, the .ywne di&ction, of convergence, e <O, is

observed for both a and &

Fig. 2(b) shows the relative error of the computed eigen-

vectors for Fig. 2(a). Since exact analytical solutions give

H,= O and HX = O for the TEIO and TEOI modes, respec-

tively, the ‘following definitions are adopted as a measure

of error involved in eigenvectors:

{

llHY1l/llHXll forTElo mode
(54)

“= I\Hx 11/11HY II for TEO1mode

llH~ll=i{~i}f{Hi} (i=x, y) (55)
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Fig. 3. Computing time necessary to obtain one point in propagation

diagram. The solid line shows total CPU time. whereas the broken fine

sho%s CPU time necessary to solve the eigenvahre problem (48),

where ~ denotes complex conjugate and transpose. It is

found from Fig. 2(b) that the relative error decreases as NE

increases.

Fig. 3 displays the computing time neceskaryto obtain

one point in a propagation diagram, where the abscissa

means the dimension of the final matrix equation (48).

Comparison between the solid and broken lines indicates

that in the present program the greater part of the computi-

ng time is spent on solving (48).

%. Shielded Image Guide

As an advanced application of the present program, we

next consider a lossy image guide shielded with a perfectly

conducting box (Z. = O). We subdivide only lmlf of the

cross section of a guide into second-order triangular ele-

ments; the plane of symmetry is assumed to be a magnetic

wall. The storage requirement is 7.6 MB in this division.

Fig. 4 shows the dispersion characteristics in the slow-

wave region for the EL mode of a loss~ isotropic image

guide, taking the imaginary part of relative permittivity,
c“, as a parameter. As is seen from Fig. 4(a), the phase

constant /3 for t“ = 0.15 (loss tangent: tan 8 = 0.1) is al-

most the same as that for c“ = O, i.e., the loss-free case.

Since the relative permittivity termor assumed in this

paper is arbitrarily diagonal as shown in (l), we can

consider a lossy ariisotropic waveguide whose principal

axis coincides with one of the coordinate axes.

1.3

X“

c!

1.2

I.1

1.0

1

Fal
&“=l.5

m

~4

i-
J“, t

k-i

a=kt

b= W=2t

&=l.5 -j&”

o 5 10
I(O t

(a)

E“=l.5
0.5 -

X“

2 o,5~

0.1 -

0.05 -

o,,~

().o,~
0 5 10

k. t

(b)

Fig. 4. Dispersion characteristics for shielded image guide composed of
lossy isotropic dielectric (EL mode). (a) Normalized phase constant.
(b) Normalized attenuation constant.

Figs. 5 and 6 show the dispersion characteristics in the

slow-wave region for the E~’ mode of a lossy anisotropic

image guide whose cross-sectional shape is the same as

that in Fig. 4. The real part of CY, ~~, is chosen as a

parameter in Fig. 5 (“dielectric anisotropy”), whereas the

imaginary part of eY, c;, is chosen in Fig. 6 (“conductivity

anisotropy”). Comparison between Fig. 5(a) and Fig. 6(a)

clearly shows that a similar effect is seen in the phase

behavior from the two types of anisbtropy. On the con-

trary, as is found from the comparison between Fig. 5(b)

and Fig. 6(b), the opposite effect is seen in the attenuation

behavior from the above two types of anisotropy. That is,

the attenuation becomes smaller as ~j increases while it

becomes larger as ~~ increases.
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Fig. 5. Dispersion characteristics for shielded image guide coinposed of
lossy anisotropic dielectric ( E{l mode). The reaf part of dielectric is
assumed to be anisotropic. (a) Normalized phase constant. (b) Normal-
ized attenuation constant.

C. Dielectric-Loaded WaveWide with Impedance Walls

As an example of the guide with the impedance walls

characterized by the surface impedance, we consider a

dielectric-loaded waveguide surrounded by a me@rn with

the surface impedance Z.. We subdivide the entire cross

section of the guide into second-order triangular elements

(NE =16, N,= 45); the storage requwement is 2.5 MB.
Fig. 7 shows the dispersion characteristics for the first

five modes of a lossy dielectric-loaded rectangular wave-

1.4

x=

s

1.3

1.2

1.1

273

I

Cx:&z=l.5-jl.5
&y=2.o

&ysl.5 -j&j

1.0
0 5 10

I

k. t

(a)

,

0.45

t i

0“’01‘“”m
f)35 ~

o 5 10
k. t

(b)

Fig. 6. Dispersion characteristics for shielded image guide composed of
lossy anisotropic dieleetnc ( E{l mode). The imaginary part of dielec-
tric is assumed to ‘be anisotropic. (a) ,Norm+ized phase constant.
(b) Normalized attenuation constant.

guide with impedance walls (Zn/ZO = 10- 3(1 + j)). Our

results agree well with those computed by Matsuhara et al.

[8] for both attenuation and phase.

V. CONCLUSIONS

A powerful computer-aided solution procedure based on

the finite-element method has been developed for solving

general waveguiding structures composed of ~bitrarily

lmsy media. In this procedure, a formulation in terms of
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Fig. 7. Dispersion characteristics for lossy dielectric-loaded waveguide
with impedance walls. c1 = 2.25(1 – jO.01), <2 = 1.0, Z./20 =
10- 3(1 + j). —present method; 0 Matsuhara et al. (a) Normalized

phase constant. (b) Normalized attenuation constant.

transverse magnetic-field component established for a gen-

eral loss-free system has been extended to a lossy system.

The main advantage of the present scheme is that one can

avoid the unnecessary iteration by means of complex fre-

quencies because the eigenvalue of the final matrix equa-

tion to be solved corresponds to the propagation constant

itself.

Although we have considered dielectric waveguides

within a conducting box, one can straightforwardly apply

the present approach to open, unbounded dielectric wave-

guides with the help of the virtual boundary walls [6], [7],

[10], [12] or the infinite elements [14]. Application to the
case of curved metallic boundaries is also straightforward

provided that they are replaced by a number of straight

lines and appropriate boundary conditions [15] are im-

posed on each line. Furthermore, the present method can

be extended to the case of arbitrary permittivity tensor

with off-diagonal elements,

APPENDIX I

DERIVATION OF (9)

Application of the standard finite-element method [12]

based on a Galerlcin procedure to (3) yields the following

matrix equation including boundary integral term along r:

[s]{ H}-k;[T]{H} +j(ko/zo)

“j(e’wl”)(~xw= {0} (Al)
r

where the Maxwell’s curl equation

v Xll=jaco[c]li (CO: vacuum permittivity) (A2)

has been utilized.

If a highly conductive material is assumed outside r, the

following boundary conditions derived from the plane-wave

approximation [11] hold:

Es= ZnHz, E== – ZnH~ on r. (A3)

Using (A3), n X E in (Al) is evaluated as

nxE=Zn(sH, +zHz)

=Z~[x(HXsin2r3 -HYsin8cos O)

+y(– HXsin6cos0

+HYCOS26)+ZHZ) (A4)

where

s=–xsinf3+ycos0 (A5)

and

H,= – HX sine + HYCOS9 (A6)

have been used. Here, x, y, and z are unit vectors for x,

y, and z directions, respectively.

Substituting (6) into (A4) and (Al), (9) is derivable.

APPENDIX II

DERIVATION OF (24)

Using the notations (35)–(47), [S], [2’”], and [T] are

explicitly written as

‘s]=[:’:.::11 (A7)

[s..]= [G;] -Y2[G:] (A9)

[SXY] = -[G:]~ (A1O)
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[s,,]= [G;] -Y2[G;]

[L] = -.h[L%’]T

[$,] = - @:]T

[szz]=[G:] + [G;]

[T;X] = j(Z~/ZO)sin28[G;]

[Tl,] = - j(Zn/ZO)sinOcos OIGi]

[T;] ‘~(-%/Z,)COS28[f%]

[v.] = j(Z/@[G]

[1[q,][Q]
‘T]= ‘[o]T [q=]

‘Tt]=[fiJ;:11
[T’.] = [Tyy] = [q,]. = [G,].

similarly, [D,] and [D,] in (16) are

[D,]= -jY-l[[G,]T [GJT]

[Dz] = [G,].

(All)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

Substituting (16), (A7), (A15), and (A21) into (21)-(23),

we can obtain

[%] = [%]+[S.][Q-l[D, ]+([S.][Q-l[U])T

Substituting (A8)-(A14), (A16)-(A20), and (A22)-(A25)

into (A26)–(A28) and (20), and rearranging the left-hand

side of (20) as a polynomial of y 2, we can derive (24).
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